的个人主页 http://faculty.cumt.edu.cn/sunchao/zh_CN/index.htm
孙超,男,副教授,博士生导师。江苏省双创博士,徐州市青年人才。
面向油气资源勘探的国家战略需求、矿井突水灾害等定量化地球物理勘探的迫切需求,近5年来本人从传统的勘探应用技术研究转入到基础科学研究领域,将岩石力学技术与传统的地球物理科学技术相结合,实现学科交叉,共融,研发了国际首套高温高压跨频段地震波频散和衰减测量装置,基于其开展了超深层岩石地震波速度频散和衰减测量,有力的推动了多尺度波致流频散和衰减流动机制的预测和解释。此外,研究兴趣涉及地震岩石物理,地球物理正反演,高性能并行计算,数字信号处理,以及机器学习在地球物理中的应用等。主持国家自然科学基金青年项目、面上项目,参与国家重点基础研究发展规划973项目,国家自然科学基金重点项目等多项纵向项目研发;主持多项中石油、中石化及中海油外协横向项目。授权专利7项,发表文章27篇。代表性文章主要发表在《Journal of Geophysical Research: Solid Earth》、《Rock Mechanics and Rock Engineering》、《Geophysical Journal International》等期刊上,受邀参加国际会议并发表会议论文数篇。担任《Journal of Geophysical Research: Solid Earth》和《Geophysics》审稿人。
招收:地球探测与信息技术学术硕士,地球物理学硕士及博士。
研究方向涉及地震岩石物理,地球物理正反演,高性能并行计算,数字信号处理,以及机器学习在地球物理中的应用等。
二、主要研究成果
1. 科研项目
主持国家自然科学基金青年项目、面上项目,江苏省双创项目,徐州市青年人才项目,参与国家自然科学基金委重点项目,科技部重点研发项目等。
2.论文
[1] BORGOMANO J V, GALLAGHER A, SUN C, et al. An apparatus to measure elastic dispersion and attenuation using hydrostatic-and axial-stress oscillations under undrained conditions[J]. Review of Scientific Instruments, 2020, 91(3).
[2] CHAO S, YONG D, JIANWEI H, et al. A gpu implementation of staggered-grid finite-difference three-dimensional (3-d) two-way wave equation time domain modeling[C]. Society of Exploration Geophysicists, 2016: 17–18.
[3] HAN X, WANG S, TANG G, et al. Coupled effects of pressure and frequency on velocities of tight sandstones saturated with fluids: measurements and rock physics modelling[J]. Geophysical Journal International, 2021, 226(2): 1308–1321.
[4] HE Y, WANG S, SUN C, et al. Analysis of the frequency dependence characteristics of wave attenuation and velocity dispersion using a poroelastic model with mesoscopic and microscopic heterogeneities[J]. Geophysical Prospecting, 2021, 69(6): 1260–1281.
[5] HE Y-X, WANG S-X, TANG G-Y, et al. A seismic elastic moduli module for the measurements of low-frequency wave dispersion and attenuation of fluid-saturated rocks under different pressures[J]. Petroleum Science, 2024, 21(1): 162–181.
[6] HE Y-X, WANG S, XI B, et al. Role of pressure and pore microstructure on seismic attenuation and dispersion of fluid-saturated rocks: laboratory experiments and theoretical modelling[J]. Geophysical Journal International, 2022, 231(3): 1917–1937.
[7] HE Y, WANG S, LI H, et al. Laboratory experiments and theoretical study of pressure and fluid influences on acoustic response in tight rocks with pore microstructure[J]. Geophysical Prospecting, 2024.
[8] HE Y, WANG S, TANG G, et al. Experimental investigation of pore-filling substitution effect on frequency-dependent elastic moduli of berea sandstone[J]. Geophysical Journal International, 2024: ggae195.
[9] LI M, TANG G, DONG C, et al. The measurement of reflection coefficient dispersion in the ultrasonic frequency range[C]. SEG, 2019: D033S082R003.
[10] LIU X, TANG G, DONG C, et al. Numerical modeling of stress-strain oscillation experiments using the finite element method[C]. European Association of Geoscientists & Engineers, 2019: 1–5.
[11] MIN* L, GENYANG T, LIMING Z, et al. A match-filter method for measuring group velocity and attenuation in the laboratory[C]. Society of Exploration Geophysicists, 2020: 6–7.
[12] SUN C, TANG G, DONG C, et al. Fluid saturation effect on the characteristic frequency and attenuation of tight sandstone[C]. European Association of Geoscientists & Engineers, 2017: 1–5.
[13] SUN C, BORGOMANO J V, FORTIN J, et al. Effect of pore collapse and grain crushing on the frequency dependence of elastic wave velocities in a porous sandstone[J]. Rock Mechanics and Rock Engineering, 2020: 1–13.
[14] SUN C, FORTIN J, BORGOMANO J V, et al. Influence of fluid distribution on seismic dispersion and attenuation in partially saturated limestone[J]. Journal of Geophysical Research: Solid Earth, 2022, 127(5): e2021JB023867.
[15] SUN C, FORTIN J, TANG G, et al. Prediction of dispersion and attenuation on elastic wave velocities in partially saturated rock based on the fluid distribution obtained from three-dimensional (3d) micro-ct images[J]. Frontiers in Earth Science, 2023, 11: 1267522.
[16] SUN C, TANG G, CHAPMAN S, et al. A numerical assessment of local strain measurements on the attenuation and modulus dispersion in rocks with fluid heterogeneities[J]. Geophysical Journal International, 2023, 235(1): 951–969.
[17] SUN C, TANG G, FORTIN J, et al. Dispersion and attenuation of elastic wave velocities: impact of microstructure heterogeneity and local measurements[J]. Journal of Geophysical Research: Solid Earth, 2020, 125(12): e2020JB020132.
[18] SUN C, TANG G, ZHAO J, et al. An enhanced broad-frequency-band apparatus for dynamic measurement of elastic moduli and poisson’s ratio of rock samples[J]. Review of Scientific Instruments, 2018, 89(6).
[19] SUN C, TANG G, ZHAO J, et al. Three-dimensional numerical modelling of the drained/undrained transition for frequency-dependent elastic moduli and attenuation[J]. Geophysical Journal International, 2019, 219(1): 27–38.
[20] SUN C, ZHANG H, TANG G, et al. 3D digital core applied to numerically predict elastic response caused by mesoscopic flow[J]. Chinese Journal of Geophysics, 2023, 66(8): 3444–3462.
[21] TANG G, GUO F, WANG S, et al. Effects of porosity, orientation and connectivity of microcracks on dispersion and attenuation of fluid-saturated rocks using an upscaling numerical modelling of the squirt flow mechanism[J]. Exploration Geophysics, 2022, 53(4): 425–438.
[22] WENXIANG Z, JIANWEI H, CHAO S, et al. The application of cpu/gpu heterogeneous parallel framework in time domain full waveform inversion[C]. Society of Exploration Geophysicists, 2016: 41–42.
[23] YUSHENG W, QIUHENG Y, XINGPING W, et al. A new electric power control system in northeast china[C]. IEEE, 1998: 1290–1294.
[24] YUSHENG W, XINGPING W, TAO F, et al. Electric power system supervisory and control system for the 21 century-cc-2000 system[C]. IEEE, 2000: 509–513.
[25] ZHANG M-F, HE Y-X, WANG S-X, et al. A benchmark study for quasi-static numerical upscaling of seismic wave attenuation and dispersion in fractured poroelastic rocks[J]. Computers & Geosciences, 2023, 180: 105459.
[26] ZHAO L, TANG G, SUN C, et al. Dual attenuation peaks revealing mesoscopic and microscopic fluid flow in partially oil-saturated fontainebleau sandstones[J]. Geophysical Journal International, 2021, 224(3): 1670–1683.
[27] ZHAO L, TANG G, WANG S, et al. Laboratory study of oil saturation and oil/water substitution effects on a sandstone’s modulus dispersion and attenuation[J]. Exploration Geophysics, 2019, 50(3): 324–335.
3.专利
[1] 孙超, 张策, 岳建华, 等. 一种高速低内存消耗的预测储层岩石弹性波速度的方法: 202211033322.7[P]. 2023–04–07.
[2] 孙超, 张策, 王尚旭, 等. 一种直接测量储层非均质岩石频变纵波速度的装置及方法: 202211058594.2[P]. 2023–05–12.
[3] 孙超, 岳建华, 王尚旭, 等. 一种预测多相孔隙介质弹性模量的高效数值模拟方法: 202111303690.4[P]. 2022–10–11.
[4] 孙超, 王尚旭, 唐跟阳, 等. 基于三维数字岩心的地震波频散和衰减特征的预测方法: 202211111069.2[P]. 2023–05–23.
[5] 孙超, 刘盛东, 章俊, 等. 一种基于岩石物理实验预测隧道挖掘后地表塌陷的方法: ZL202410010077.0[P]. 2024–08–13.
[6] 孙超, 刘盛东, 章俊, 等. 一种预测隧道内盾构机工作诱发地震波传播的方法: ZL202410010823.6[P]. 2024–08–06.
[7] 孙超, 姜志海, 李良钰, 等. 一种考虑毛细管力的双相饱和页岩速度频散预测方法: 202310733974.X[P]. 2024–02–09.
4.软件著作权
[1] 双变网格的正演模拟的软件V1.0,软件著作权,2012SR046018,
[2] 2D三份量各项异性模拟的软件V1.0,软件著作权,2012SR046519
[3] 地震照明度分析软件V1.0,软件著作权,2011SR0437
[4] 射线参数域绕射波分离与成像软件V1.0,软件著作权,2013SR071551
[5] 声波高斯束逆时偏移软件V1.0,软件著作权,2013SR059411
[6] 3D平面波域绕射波分离软件V1.0,软件著作权,2013SR071433
[7] 基于高速倾角预测的seislet变换去燥软件,软件著作权,2016SR091637
[8] 基于数字岩心预测地震波频散和衰减的软件V1.0,软件著作权,2023SR1059379
[9] 地震波频散个衰减预测系统V1.0,软件著作权,2023SR1129963
[10]地震波频散曲线反演软件V1.0,软件著作权,2023SR1392040
[11]隧道随掘检测移动勘查系统V1.0,软件著作权,2024SR0298597
联系方式
电子邮箱:sunchao@cumt.edu.cn