Chao SUN

Supervisor of Master's Candidates

E-Mail:

School/Department:China University of Mining and Technology

Education Level:With Certificate of Graduation for Doctorate Study

Business Address:中国矿业大学文昌校区科创3号楼406

Gender:Male

Degree:Doctor

Status:在岗

Academic Titles:教师

Alma Mater:École normale supérieure


Current position: Home >> Teaching Research >> Teaching Resources

total0   0/0 

Profile

孙超,男,副教授,博士生导师。2021年毕业于巴黎高等师范学院(巴黎文理研究大学),获得博士学位。江苏省双创博士,徐州市青年人才。

面向油气资源勘探的国家战略需求、矿井突水灾害等定量化地球物理勘探的迫切需求,近5年来本人从传统的勘探应用技术研究转入到基础科学研究领域,将岩石力学技术与传统的地球物理科学技术相结合,实现学科交叉,共融,研发了国际首套高温高压跨频段地震波频散和衰减测量装置,基于其开展了超深层岩石地震波速度频散和衰减测量,有力的推动了多尺度波致流频散和衰减流动机制的预测和解释。此外,研究兴趣涉及地震岩石物理,地球物理正反演,高性能并行计算,数字信号处理,以及机器学习在地球物理中的应用等。主持国家自然科学基金青年项目、面上项目,参与国家重点基础研究发展规划973项目,国家自然科学基金重点项目等多项纵向项目研发;主持多项中石油、中石化及中海油外协横向项目。授权专利7项,发表文章27篇。代表性文章主要发表在《Journal of Geophysical Research: Solid Earth》、《Rock Mechanics and Rock Engineering》、《Geophysical Journal International》等期刊上,受邀参加国际会议并发表会议论文数篇。担任《Journal of Geophysical Research: Solid Earth》和《Geophysics》审稿人。

招收:地球探测与信息技术学术硕士,地球物理学硕士及博士。


研究方向涉及地震岩石物理,地球物理正反演,高性能并行计算,数字信号处理,以及机器学习在地球物理中的应用等。


二、主要研究成果

1. 科研项目

[1] 国家自然科学基金委员会, 青年基金项目, 流体分布模式对碳酸盐岩储层地震波频散与衰减特性影响的定量研究, 2022 年1 月-2024 年12 月,在研,主持

[2] 国家自然科学基金委员会, 面上项目, 碳酸盐岩孔隙介观非均质性与地震波频散和衰减关系的定量研究,2025 年1 月-2028 年12 月,在研,主持

[3] 江苏省“双创计划”,双创博士, 2022 年1 月-2024 年12 月,在研,主持

[4] 徐州市科技局,青年人才项目,碳酸盐岩储层双尺度流频散机理敏感影响因素定量研究(青年人才),2022年09-2024年08月,在研,主持;

[5] 油气资源探测国家重点实验室,碳酸盐岩储层双尺度流地震波频散与衰减机理研究,2022年06月-2024年05月,结题,主持

[6] 中华人民共和国科学技术部,西部干旱区煤能源基地生态保护与资源综合利用及技术示范, 2022年09月-2026年08月,在研,参加

[7] 国家自然科学基金委员会,重点项目,稠油油藏多频段岩石物理实验、理论及应用研究, 2020年01月-2024年12月,在研,参加

[8] 国家科技部,重点研发计划,高分辨率地震实时成像理论与技术,2019年09月-2024年08月,结题,参与

[9] 国家自然科学基金委员会,面上项目,致密砂岩多频带岩石物理特征与流体检测应用, 2018年01月至2021年12月,结题, 参加

[10] 中石化石油物探技术研究院有限公司, 重点项目, 基于MTS的低频动态弹性模量测量技术及装置研发,2023 年8 月-2025 年7 月,在研,主持

[11] 中国石油化工股份有限公司胜利油田分公司物探研究院,外协项目,深层致密储层频变特征岩石物理测试,2023 年8 月-2024 年12月,在研,主持

[12] 中石化石油物探技术研究院有限公司,基于MTS815的低频岩石物理测量单元仿真模拟与优化设计,2022 年12月-2024 年12 月,在研,主持

[13] 成都理工大学,外协项目,砂砾岩岩石物理测试,2023 年9 月-2025 年9 月,在研,主持

[14] 成都理工大学,外协项目,湖相碳酸盐岩岩石物理测试,2023 年5月-2025 年5月,在研,主持

[15] 中国石油化工股份有限公司胜利油田分公司物探研究院,外协项目,多孔结构岩石物理建模方法研究,2024 年5月-2026 年5月,在研,主持;

[16] 山西宁武榆树坡煤业有限公司,外协项目,基于地球物理的矿山突水定量预测理论与技术研究,2023年04月-2024年04月,结题,参加;

[17] 云龙湖实验室,外协项目,隧道智能超前地质随掘随探与多源数据集成及评价技术,2023年04月-2026年04月,参加;

2.论文

[1] BORGOMANO J V, GALLAGHER A, SUN C, et al. An apparatus to measure elastic dispersion and attenuation using hydrostatic-and axial-stress oscillations under undrained conditions[J]. Review of Scientific Instruments, 2020, 91(3).

[2] CHAO S, YONG D, JIANWEI H, et al. A gpu implementation of staggered-grid finite-difference three-dimensional (3-d) two-way wave equation time domain modeling[C]. Society of Exploration Geophysicists, 2016: 17–18.

[3] HAN X, WANG S, TANG G, et al. Coupled effects of pressure and frequency on velocities of tight sandstones saturated with fluids: measurements and rock physics modelling[J]. Geophysical Journal International, 2021, 226(2): 1308–1321.

[4] HE Y, WANG S, SUN C, et al. Analysis of the frequency dependence characteristics of wave attenuation and velocity dispersion using a poroelastic model with mesoscopic and microscopic heterogeneities[J]. Geophysical Prospecting, 2021, 69(6): 1260–1281.

[5] HE Y-X, WANG S-X, TANG G-Y, et al. A seismic elastic moduli module for the measurements of low-frequency wave dispersion and attenuation of fluid-saturated rocks under different pressures[J]. Petroleum Science, 2024, 21(1): 162–181.

[6] HE Y-X, WANG S, XI B, et al. Role of pressure and pore microstructure on seismic attenuation and dispersion of fluid-saturated rocks: laboratory experiments and theoretical modelling[J]. Geophysical Journal International, 2022, 231(3): 1917–1937.

[7] HE Y, WANG S, LI H, et al. Laboratory experiments and theoretical study of pressure and fluid influences on acoustic response in tight rocks with pore microstructure[J]. Geophysical Prospecting, 2024.

[8] HE Y, WANG S, TANG G, et al. Experimental investigation of pore-filling substitution effect on frequency-dependent elastic moduli of berea sandstone[J]. Geophysical Journal International, 2024: ggae195.

[9] LI M, TANG G, DONG C, et al. The measurement of reflection coefficient dispersion in the ultrasonic frequency range[C]. SEG, 2019: D033S082R003.

[10] LIU X, TANG G, DONG C, et al. Numerical modeling of stress-strain oscillation experiments using the finite element method[C]. European Association of Geoscientists & Engineers, 2019: 1–5.

[11] MIN* L, GENYANG T, LIMING Z, et al. A match-filter method for measuring group velocity and attenuation in the laboratory[C]. Society of Exploration Geophysicists, 2020: 6–7.

[12] SUN C, TANG G, DONG C, et al. Fluid saturation effect on the characteristic frequency and attenuation of tight sandstone[C]. European Association of Geoscientists & Engineers, 2017: 1–5.

[13] SUN C, BORGOMANO J V, FORTIN J, et al. Effect of pore collapse and grain crushing on the frequency dependence of elastic wave velocities in a porous sandstone[J]. Rock Mechanics and Rock Engineering, 2020: 1–13.

[14] SUN C, FORTIN J, BORGOMANO J V, et al. Influence of fluid distribution on seismic dispersion and attenuation in partially saturated limestone[J]. Journal of Geophysical Research: Solid Earth, 2022, 127(5): e2021JB023867.

[15] SUN C, FORTIN J, TANG G, et al. Prediction of dispersion and attenuation on elastic wave velocities in partially saturated rock based on the fluid distribution obtained from three-dimensional (3d) micro-ct images[J]. Frontiers in Earth Science, 2023, 11: 1267522.

[16] SUN C, TANG G, CHAPMAN S, et al. A numerical assessment of local strain measurements on the attenuation and modulus dispersion in rocks with fluid heterogeneities[J]. Geophysical Journal International, 2023, 235(1): 951–969.

[17] SUN C, TANG G, FORTIN J, et al. Dispersion and attenuation of elastic wave velocities: impact of microstructure heterogeneity and local measurements[J]. Journal of Geophysical Research: Solid Earth, 2020, 125(12): e2020JB020132.

[18] SUN C, TANG G, ZHAO J, et al. An enhanced broad-frequency-band apparatus for dynamic measurement of elastic moduli and poisson’s ratio of rock samples[J]. Review of Scientific Instruments, 2018, 89(6).

[19] SUN C, TANG G, ZHAO J, et al. Three-dimensional numerical modelling of the drained/undrained transition for frequency-dependent elastic moduli and attenuation[J]. Geophysical Journal International, 2019, 219(1): 27–38.

[20] SUN C, ZHANG H, TANG G, et al. 3D digital core applied to numerically predict elastic response caused by mesoscopic flow[J]. Chinese Journal of Geophysics, 2023, 66(8): 3444–3462.

[21] TANG G, GUO F, WANG S, et al. Effects of porosity, orientation and connectivity of microcracks on dispersion and attenuation of fluid-saturated rocks using an upscaling numerical modelling of the squirt flow mechanism[J]. Exploration Geophysics, 2022, 53(4): 425–438.

[22] WENXIANG Z, JIANWEI H, CHAO S, et al. The application of cpu/gpu heterogeneous parallel framework in time domain full waveform inversion[C]. Society of Exploration Geophysicists, 2016: 41–42.

[23] YUSHENG W, QIUHENG Y, XINGPING W, et al. A new electric power control system in northeast china[C]. IEEE, 1998: 1290–1294.

[24] YUSHENG W, XINGPING W, TAO F, et al. Electric power system supervisory and control system for the 21 century-cc-2000 system[C]. IEEE, 2000: 509–513.

[25] ZHANG M-F, HE Y-X, WANG S-X, et al. A benchmark study for quasi-static numerical upscaling of seismic wave attenuation and dispersion in fractured poroelastic rocks[J]. Computers & Geosciences, 2023, 180: 105459.

[26] ZHAO L, TANG G, SUN C, et al. Dual attenuation peaks revealing mesoscopic and microscopic fluid flow in partially oil-saturated fontainebleau sandstones[J]. Geophysical Journal International, 2021, 224(3): 1670–1683.

[27] ZHAO L, TANG G, WANG S, et al. Laboratory study of oil saturation and oil/water substitution effects on a sandstone’s modulus dispersion and attenuation[J]. Exploration Geophysics, 2019, 50(3): 324–335.


3.专利


[1] 孙超, 张策, 岳建华, 等. 一种高速低内存消耗的预测储层岩石弹性波速度的方法: 202211033322.7[P]. 2023–04–07.

[2] 孙超, 张策, 王尚旭, 等. 一种直接测量储层非均质岩石频变纵波速度的装置及方法: 202211058594.2[P]. 2023–05–12.

[3] 孙超, 岳建华, 王尚旭, 等. 一种预测多相孔隙介质弹性模量的高效数值模拟方法: 202111303690.4[P]. 2022–10–11.

[4] 孙超, 王尚旭, 唐跟阳, 等. 基于三维数字岩心的地震波频散和衰减特征的预测方法: 202211111069.2[P]. 2023–05–23.

[5] 孙超, 刘盛东, 章俊, 等. 一种基于岩石物理实验预测隧道挖掘后地表塌陷的方法: ZL202410010077.0[P]. 2024–08–13.

[6] 孙超, 刘盛东, 章俊, 等. 一种预测隧道内盾构机工作诱发地震波传播的方法: ZL202410010823.6[P]. 2024–08–06.

[7] 孙超, 姜志海, 李良钰, 等. 一种考虑毛细管力的双相饱和页岩速度频散预测方法: 202310733974.X[P]. 2024–02–09.


4.软件著作权


[1] 双变网格的正演模拟的软件V1.0,软件著作权,2012SR046018,

[2] 2D三份量各项异性模拟的软件V1.0,软件著作权,2012SR046519

[3] 地震照明度分析软件V1.0,软件著作权,2011SR0437

[4] 射线参数域绕射波分离与成像软件V1.0,软件著作权,2013SR071551

[5] 声波高斯束逆时偏移软件V1.0,软件著作权,2013SR059411

[6] 3D平面波域绕射波分离软件V1.0,软件著作权,2013SR071433

[7] 基于高速倾角预测的seislet变换去燥软件,软件著作权,2016SR091637

[8] 基于数字岩心预测地震波频散和衰减的软件V1.0,软件著作权,2023SR1059379

[9] 地震波频散个衰减预测系统V1.0,软件著作权,2023SR1129963

[10]地震波频散曲线反演软件V1.0,软件著作权,2023SR1392040

[11]隧道随掘检测移动勘查系统V1.0,软件著作权,2024SR0298597


联系方式

电子邮箱:sunchao@cumt.edu.cn


Scan Code to Visit My Home Page