扫描手机二维码

欢迎您的访问
您是第 位访客
  • 俞昆 ( 讲师 )

    的个人主页 http://faculty.cumt.edu.cn/YK77/zh_CN/index.htm

  •   讲师   硕士生导师
研究方向 当前位置: 中文主页 >>研究方向
机电设备智能诊断

w   机电设备智能运维相关论文(SCI论文10篇,EI论文2)

[1]      K. Yu, T. R. Lin, H. Ma, X. Li and X. Li, “A multi-stage semi-supervised learning approach for intelligent fault diagnosis of rolling bearing using data augmentation and metric learning,” Mechanical Systems and Signal Processing, vol. 146, 107043, Jan. 2021. 

[2]      K. Yu, T.R. Lin and J. Tan, “A bearing fault and severity diagnostic technique using adaptive deep belief networks and Dempster-Shafer theory,” Structural Health Monitoring, vol. 19, no. 1, pp. 240-261, Jan. 2020.

[3]      K. Yu, Q. Fu, H. Ma, T. R. Lin, and X. Li, “Simulation data driven weakly supervised adversarial domain adaptation approach for intelligent cross-machine fault diagnosis,” Structural Health Monitoring, vol. 20, no. 4, pp. 2182-2198, Jul. 2021.

[4]      K. Yu, H. Ma, T. R. Lin, and X. Li, “A consistency regularization based semi-supervised learning approach for intelligent fault diagnosis of rolling bearing,” Measurement, vol. 165, 107987, Dec. 2020.

[5]      K. Yu, T.R. Lin and J. Tan, “A bearing fault diagnosis technique based on singular values of EEMD spatial condition matrix and Gath-Geva clustering,” Applied Acoustics, vol. 121, pp. 33-45, Jun. 2017. 

[6]      K. Yu, H. Han, Q. Fu, H. Ma and J. Zeng, “Symmetric co-training based unsupervised domain adaptation approach for intelligent fault diagnosis of rolling bearing,” Measurement Science and Technology, vol. 31, no. 11, 115008 (15pp), Aug. 2020.

[7]      K. Yu, J. Tan and T.R. Lin, “Fault diagnosis of rolling element bearing using multi-scale Lempel-Ziv complexity and Mahalanobis distance criterion,” Journal of Shanghai Jiaotong University (Science), vol. 23, no. 5, pp. 696-701, Jun. 2018. (EI论文)

[8]  基于双级对齐部分迁移网络的旋转设备故障诊断,电子学报

[9]  Integrated intelligent fault diagnosis approach of offshore wind turbine bearing based on information stream fusion and semi-supervised learning, Expert Systems with Applications 通讯

[10] Intelligent fault diagnosis of rotating machinery under variable working conditions based on deep transfer learning with fusion of local and global time–frequency features, Structural Health Monitoring 通讯

[11] Dynamics Simulation-driven Fault Diagnosis of Rolling Bearings Using Security Transfer Support Matrix Machine, Reliability Engineering & System Safety 共同通讯

[12] Kun Yu, Xuesong Wang*, Yuhu Cheng, Ke Feng, Yongchao Zhang, Bin Xing. Dual structural consistent partial domain adaptation network for intelligent machinery fault diagnosis. IEEE Transactions on Instrumentation and Measurement, 2024, 73, 3520413.

QQ截图4.png

版权所有:中国矿业大学