• 中文

吴钢   Professor

吴钢,博士,教授,博士生导师,江苏省“青蓝工程”中青年学术带头人,江苏省“333工程”中青年科学技术带头人”,现任江苏省计算数学学会副理事长。 主要研究方向:数据科学中的大规模矩阵计算;数据挖掘与统计计算;大数据相关快速算法与理论;机器学习中的快速算法与优化;人工智能的数学理论与快速算法; 教育背景:1994年9月-1998年7月就读于山东大学数学与系统科学学院计算数学及其应用软件专业,获理学学士学位;1998年9...Detials

Profile
Current position: Home > Profile

吴钢,博士,教授,博士生导师,江苏省青蓝工程中青年学术带头人,江苏省“333工程中青年科学技术带头人,现任江苏省计算数学学会副理事长。

 

主要研究方向:数据科学中的大规模矩阵计算;数据挖掘与统计计算;大数据相关快速算法与理论;机器学习中的快速算法与优化;人工智能的数学理论与快速算法;

 

教育背景19949-19987月就读于山东大学数学与系统科学学院计算数学及其应用软件专业,获理学学士学位;19989-20017月就读于大连理工大学应用数学系,获理学硕士学位;20019-20047月就读于复旦大学数学研究所,获理学博士学位。

 

招生专业 

博士生招生专业:计算数学(招生方向:大规模科学与工程计算、数据科学中的大规模矩阵计算、数据挖掘与统计计算);人工智能(招生方向:人工智能的数学理论与快速算法、机器学习中的快速算法与优化);

硕士生招生专业(欢迎打算读博深造的同学):计算数学、统计学、应用数学、运筹学与控制论、人工智能(人工智能的数学理论与快速算法、机器学习中的快速算法与优化)、大数据技术与工程(大数据快速算法与理论);

 

个人主页吴钢 (cumt.edu.cn)

研究生院个人主页http://yjsxt.cumt.edu.cn/Gwork/Teacher/TeacherInfo.aspx?EID=LaosoqV95obwlF5b1lJ4MWcny1oCMgkH

联系方式E-mailgangwu@cumt.edu.cn,  QQ2545165275

通讯地址:江苏省徐州市,中国矿业大学数学学院A309,邮政编码:221116

   

一、主讲课程

研究生课程:数据分析与数据挖掘、机器学习、统计学习方法、大规模科学计算方法、人工智能的数学基础、工程计算的新方法等;

本科生课程:统计计算、数据挖掘、矩阵计算(双语)、数值分析、矩阵分析等。

 

二、科研项目

1.主持国家自然科学基金面上项目:高维大样本数据降维中核矩阵计算问题的随机算法研究,No. 12271518, 2023.1-2026.12, 在研;

2. 主持国家自然科学基金面上项目:复杂网络关键节点快速算法研究及其在蛋白质功能预测中的应用,No. 11371176, 2014.1-2017.12,已结题;

3.主持国家自然科学基金项目(青年基金):PageRank问题的研究及其在基因芯片数据挖掘中的应用,No.109011322010.1-2012.12,已结题;

4.主持国家自然科学基金项目(数学天元青年基金): Google搜索引擎中网页等级问题的理论与快速算法研究,No.106260442007.1-2007.12,已结题;

5. 主持江苏省自然科学基金面上项目:高维数据降维的不精确矩阵函数判别分析方法研究, No. BK201711852017.7-2020.6,已结题;

6.主持江苏省自然科学基金面上项目基于投影类技术的数据降维算法及其在图像处理中的应用,No. BK20131126, 2013.7-2016.6,已结题;

7. 主持徐州市重点研发计划:基于大数据随机算法与核机器学习的超大规模人脸验证关键技术研究No. KC222882022.9-2024.8,在研;

8. 主持江苏省教育厅自然科学基金项目:现代网络信息检索中超大规模矩阵计算问题的研究,No.08KJB110012, 2008.6-2010.12,已结题;

 

三、学术论著

已在SIAM Journal on Numerical Analysis, SIAM Journal on Scientific Computing, SIAM Journal on Matrix Analysis and Applications, IMA Journal of Numerical Analysis, IEEE Transactions on Knowledge and Data Engineering, Pattern Recognition, Machine Learning, ACM Transactions on Information Systems等国际知名期刊发表学术论文多篇。部分代表性学术论著如下:


2025

Bo Feng, Gang Wu, First-order perturbation theory of trust-region subproblem, IMA Journal of Numerical Analysis, https://doi.org/10.1093/imanum/drae042, 2025.

 

Yu Zhang, Gang Wu, Two accelerated non-backtracking PageRank algorithms for large-scale networks, Journal of Scientific Computing, 102: Article 3, 2025.

 

Bo Feng, Gang Wu, On convergence of the generalized Lanczos trust-region method for trust-region subproblems, Advances in Computational Mathematics, https://doi.org/doi. 10.1007/s10444-024-10217-5, 2025.

 

Shunchang Li, GangWu, A semi-randomized and augmented Kaczmarz method with simple random sampling for large-scale inconsistent linear systems, Numerical Linear Algebra with Applications, https://doi.org/10.1002/nla.2591, 2025.

 

2024

Bo Feng, Gang Wu, A block Lanczos method for large-scale quadratic minimization problems with orthogonality constraints, SIAM Journal on Scientific Computing, 46: A884-A905, 2024.

Yongyan Guo, Gang Wu, A restarted large-scale spectral clustering with self-guiding and block diagonal representation, Pattern Recognition, 156, Article 110746, 2024.

Wenya Shi, Gang Wu, A randomized algorithm for trace-ratio problem with applications to high-dimensional and large sample dimensionality reduction, Machine Learning, 113: 3889-3916, 2024. 

Bo Feng, Gang Wu, Convergence of the block Lanczos method for the trust-region subproblem in the hard case, Numerical Linear Algebra with Applications, Article 2561, 2024.

Gang Wu, Jiali Yang, Randomized algorithms for large-scale dictionary learning, Neural Networks, 179, Article 106628, 2024.


2023

Gang Wu, Keke Peng, An inverse-free block-SOR method with randomly sampling for temporal multiplex PageRank problems, IEEE Transactions on Knowledge and Data Engineering, 35: 7736-7752, 2023.

Jun Huang, Gang Wu, Truncated and sparse power methods with partially updating for large and sparse higher-order PageRank problems, Journal of Scientific Computing, 95: Article 34, 2023.

Yutong Jiang, Gang Wu, Long Jiang, A semi-randomized Kaczmarz method with simple random sampling for large-scale linear systems, Advances in Computational Mathematics, 49: Article 20, 2023.

2022

Yongyan Guo, Gang Wu, A new lower bound on the size of the smallest vertex separator of a graph, SIAM Journal on Matrix Analysis and Applications, 43: 370-376, 2022.

Wenrao Pang, Gang Wu, Fast algorithms for incremental and decremental semi-supervised discriminant analysis, Pattern Recognition, 131, Article 108888, 2022.  

Ke Li, Gang Wu. Randomized approximate class-specific kernel spectral regression analysis for large-scale face verification, Machine Learning, 111: 2037–2091, 2022.

Bo Feng, Gang Wu, Refined bounds on the convergence of block Lanczos method for extended trust-region subproblem, Applied Numerical Mathematics, 181: 388–402, 2022.

2021

Gang Wu, Fei Li, A randomized exponential canonical correlation analysis method for data analysis and dimensionality reduction, Applied Numerical Mathematics, 164: 101–124, 2021.

Azita Tajaddini, Gang Wu, Farid Saberi-Movahed, Najmeh Azizizadeh,  Two new variants of the simpler block GMRES method with vector deflation and eigenvalue deflation for multiple linear systems, Journal of Scientific Computing, 86: Article 9, 2021.

Ke Li, Gang Wu, A randomized generalized low rank approximations of matrices algorithm for high dimensionality reduction and image compression, Numerical Linear Algebra with Applications, 28, e2338, 2021.

Jun Huang, Gang Wu, Convergence of the fixed-point iteration for multilinear PageRank, Numerical Linear Algebra with Applications, 28, e2379, 2021.

2020

Yingdi LuGang Wu, Fast and incremental algorithms for exponential semi-supervised discriminant embedding, Pattern Recognition, 108, 107530, 2020.

Yunjie Wang, Gang Wu, New strategies for determining backward perturbation bound of approximate two-sided Krylov subspaces, Numerical Linear Algebra with Applications, 27, e2324, 2020.

Yunjie Wang, Gang Wu, On the Kahan-Parlett-Jiang theorem—A globally optimal backward perturbation error for two-sided invariant subspaces, Linear Algebra and its Applications, 602, 73-92, 2020.

2018

Gang Wu, Lu Zhang. New algorithms for approximating phi-functions and their condition numbers for large sparse matrices, IMA Journal of Numerical Analysis, 38: 1185–1208, 2018. 

2017

Gang Wu. The convergence of harmonic Ritz vectors and harmonic Ritz values, Revisited,  SIAM Journal on Matrix Analysis and Applications, 2017 , 38: 118--133. 

Gang Wu, Tingting Feng, Lijia Zhang, Meng Yang. Inexact implementation using Krylov subspace methods for large scale exponential discriminant analysis with applications to high dimensionality reduction problems, Pattern Recognition, 66: 328--341, 2017.

Gang Wu, Hongkui Pang. On the correction equation of the Jacobi-Davidson method, Linear Algebra and its Applications, 522: 51--70, 2017.

2016

Gang Wu, Lu Zhang, Ting-ting Xu. A framework of the harmonic Arnoldi method for evaluating phi-functions with applications to exponential integrators, Advances in Computational Mathematics, 42: 505--541, 2016.

2015

Gang Wu, Wei Xu and Huan Leng. Inexact and incremental bilinear Lanczos components algorithms for high dimensionality reduction and image reconstruction, Pattern Recognition, 48: 244--263, 2015. 

Gang Wu, Ting-ting Feng, Yimin Wei. An inexact shift-and-invert Arnoldi algorithm for Toeplitz matrix exponential, Numerical Linear Algebra with Applications, 22: 777--792, 2015. 

Gang Wu, Ting-ting Feng. A theoretical contribution to the fast implementation of null linear discriminant analysis with random matrix multiplication, Numerical Linear Algebra with Applications, 22: 1180--1188, 2015.

2014

Gang Wu, Lu Zhang, On expansion of search subspaces for large non-Hermitian eigenproblem, Linear Algebra and its Applications, 454: 107--129, 2014. 

2013

Gang Wu, Wei Xu, Ying Zhang and Yimin Wei, A preconditioned conjugate gradient algorithm for GeneRank with application to microarray data mining, Data Mining and Knowledge Discovery, 26: 27--56, 2013. 

Gang Wu, Ying Zhang and Yimin Wei, Accelerating the Arnoldi-type algorithm for the PageRank problem and the ProteinRank problem. Journal of Scientific Computing, 57: 74--104, 2013. 

Gang Wu, Yimin Wei, Zhigang Jia, Sitao Ling and Lu Zhang, Towards backward error bounds for approximate dual Krylov subspaces, BIT Numerical Mathematics, 53: 225–239, 2013.

2012

Gang Wu, Yanchun Wang and Xiaoqing Jin, A preconditioned and shifted GMRES algorithm for the PageRank problem with multiple damping factors, SIAM Journal on Scientific Computing, 34, A2558--A2575, 2012. 

Q. Yu, Z. Miao, G. Wu, and Y. Wei, Lumping algorithms for computing Google’s PageRank and its derivative, with attention to unreferenced nodes, Information Retrieval, 15: 503– 703, 2012.

2010

Gang Wu, Yimin Wei. On analysis of projection methods for rational function approximation to the matrix exponential, SIAM Journal on Numerical Analysis, 48: 191--197, 2010. 

Gang Wu, Yimin Wei, Arnoldi versus GMRES for computing PageRank: A theoretical contribution to Google’s PageRank Problem. ACM Transactions on Information Systems, 28, Article 11: 1--28, 2010. 

Gang Wu, Ying Zhang, Yimin Wei, Krylov subspace algorithms for computing GeneRank for the analysis of microarray data mining. Journal of Computational Biology, 17: 631--646, 2010. 

2008

Gang Wu, Yimin Wei, Comments on Jordan canonical form of the Google matrix. SIAM Journal on Matrix Analysis and Applications, 30: 364--374, 2008. 

2007

Gang Wu, Yimin Wei, A Power-Arnoldi algorithm for computing PageRank. Numerical Linear Algebra with Applications, 14: 521--546, 2007. 

2006

Gang Wu, A dynamic thick restarted semi-refined ABLE algorithm for computing a few selected eigentriplets of large nonsymmetric matrices. Linear Algebra and its Applications, 416: 313--335, 2006. 

    

研究团队:

在读研究生:

博士生:李文烁、李羽航;韦安丽、周胜炜;郭永燕、顾颖;

硕士生:袁祥、万永熙、王俊雅、侯睿、施海鹏;郭体瑞、李国荣、于文涛、郭义龙;张启元、王召勇、李炳谕、曲志璇、李夏昕;

 

已毕业学生: 

博士生:丰博(扬州大学数学科学学院)李珂(徐州医科大学,医学信息与工程学院)、时文雅(常州大学,阿里云大数据学院)、王云杰(江苏师范大学,科文学院);

硕士生:李顺昌(上海师范大学读博)、李艳艳(北京小米移动软件有限公司)、王秋茹(武汉市公安局中心城区下属分局)、张宇(山东省威海经济开发区,教师);黄俊(上海概伦电子股份有限公司)、杨文(苏州银行)、常乔(山东省枣庄市第十六中学);郭永燕(硕博连读)、庞文娆(上海人工智能创新中心)、彭可可(上海市浦发银行)、杨佳丽(兴业银行股份有限公司西安分行);丰博(硕博连读);刘静(南京银行总行)、景圆倩(苏州银行);李珂(硕博连读)、江宇同(中国建设银行徐州分行)、李斐(上海市浦发银行)、王健健(江苏省昆山开发区兵希小学);陆迎弟(江苏省运河中学);冯亭亭(华东师大读博,现任职于杭州电子科技大学)、许婷婷(江苏大学靖江学院);田娟娟、张立家、袁枚;张露(澳门大学读博,现任职于徐州工程学院)、冷欢;王艳春、孙江丽;王建(徐州开放大学)、张凤勋、刘文杰;仲红秀(华东师大读博,现任职于江南大学)、于庆(徐州师范学校)、姜薇