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A Wideband Dual-Polarized Omnidirectional
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Abstract— A wideband dual-polarized omnidirectional antenna
is proposed for mobile communication base station and 2.4 GHz
wireless local area network applications. An integrated design
is achieved by combining an inverted-cone monopole for ver-
tical polarization (VP) and a modified cross bow-tie dipole
for horizontal polarization (HP). The proposed antenna has a
compact size because the HP element acts as the HP radiating
element and the ground plane for the VP element simultaneously.
The proposed VP and HP antennas are excited by a 50 �
Sub-Miniature-A connector and a broadband feeding network,
respectively. The overall volume of the proposed antenna is
only 0.35λ0 × 0.35λ0 × 0.25λ0 (with λ0 being the wavelength
of the lowest frequency). Simulation results show that the dual-
polarized omnidirectional antenna achieves a bandwidth (for
|S11| < −10 dB) of about 41.5% (1.64–2.5 GHz) with an isolation
of at least 25 dB and the gain variations at the center frequency
in the horizontal plane are 0.7 dB for VP and 2.3 dB for HP. The
good agreements between the simulation and measured results
validate the proposed design.

Index Terms— Dual-polarized omnidirectional antenna,
inverted-cone monopole, modified cross bow-tie dipole.

I. INTRODUCTION

OMNIDIRECTIONAL antennas have received a great
deal of attention for wireless communication systems,

such as base stations [1], [2], wireless local area net-
works (WLANs) [3], and many portable devices [4]. For
modern base station/WLAN systems, compact wideband dual-
polarized omnidirectional antennas are necessary compo-
nents. However, designing such antennas is technically very
challenging.

According to the open literature, the most effective approach
to achieve dual polarizations is to combine different vertical
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polarization (VP) or horizontal polarization (HP) antennas.
The coaxial collinear antenna [5] and inverted hat [6] were
widely used for achieving a VP, while the loop antenna [3] and
planar folded dipole [7] were proposed for realizing an HP.
In practical applications, it is of great importance to seek
a compact design for a wideband dual-polarization antenna
with a good isolation. Recently, several designs were proposed
to achieve dual polarizations [8]–[16]. In [8], a compact
omnidirectional dual-polarized antenna using highly isolated
slots was designed for 2.4 GHz WLAN, achieving an operating
bandwidth of 9.5%. Another dual-polarized omnidirectional
planar slot antenna was presented in [9] for 5.2 GHz WLAN,
with a bandwidth of about 10% and different omnidirectional
planes for VP and HP. To enhance the bandwidth, some
novel antenna designs for mobile communications systems
were proposed in [12]–[14]. Specifically, a combination of
a modified low-profile monopole and a planar circular loop
was proposed in [12]. A design composing of four vertical
dipoles and four horizontal dipoles was presented in [13].
Furthermore, a center-fed discone combined with a printed
dipole array was designed for bandwidth enhancement [14].
In [15], an artificial magnetic conductor reflector was applied
to reduce the profile height of the designed wideband dual-
polarized antenna. A wideband dual-polarized antenna for
spectrum monitoring systems was proposed in [16] by merging
an inverted-cone monopole and a cross bow-tie. However,
its radiation patterns have to be improved to serve as an
omnidirectional antenna.

In this paper, a new wideband dual-polarized omnidirec-
tional antenna, similar to the one in [16], is proposed for base
station/WLAN systems. The antenna employs an inverted-cone
monopole for the VP and an interconnected cross bow-tie
as the HP element for improving the impedance matching
and the omnidirectional radiation pattern in the xy plane. The
proposed antenna has the following improvements compared
to the previous work in [16].

1) The input impedance of the HP element is decreased
from 200 to 50 � by using the shorting pins.

2) The stability of the omnidirectional radiation patterns in
the xy plane over all the frequency bands is improved
effectively.

3) The HP omnidirectional pattern is further analyzed using
mathematical formulas.

4) The omnidirectional frequency band covers
1.64–2.5 GHz, which enables the simultaneous use
for mobile communication base station and 2.4 GHz
WLAN applications.
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Fig. 1. (a) Simulated model of the wideband dual-polarized omnidirec-
tional antenna. (b) Side view and the structure of the SMA connection
of VP element. (c) Feeding structure of the HP element (L = 66 mm,
L1 = 60 mm, L2 = 6 mm, L3 = 50 mm, L4 = 13 mm, L5 = 16 mm,
W1 = 13 mm, W2 = 38 mm, W3 = 6 mm, W4 = 10 mm, R = 8 mm,
R1 = 12.7 mm, H = 43.1 mm, H1 = 6 mm, H2 = 25.4 mm, D1 = 2 mm,
D2 = 3 mm, and D3 = 1 mm).

II. ANTENNA CONFIGURATION

The configuration of the proposed wideband dual-polarized
omnidirectional antenna is sketched in Fig. 1, which is a
combination of an element for VP and an element for HP.
The VP element is mainly an inverted-cone monopole, and
the HP element is a modified cross bow-tie dipole. The two
elements are integrated in a compact size by using a small
circular ground, which is located at the middle position of
the HP element. Fig. 1(a)–(c) shows the entire model of the

Fig. 2. Geometry and normalized radiation pattern of a cross dipole of finite
length in the xy plane. (a) Cross dipole. (b) ET 0 and ET 90 when l = 0.25 λc.
(λc is the wavelength at the center frequency.)

proposed antenna, the side view and Sub-Miniature-A (SMA)
connection schematic for the VP antenna, and the feeding
structure of the whole antenna, respectively, where L denotes
the base dimension of the proposed antenna.

The whole VP element is composed of an inverted-cone
tube, a small circular ground of radius R, and a modified cross
bow tie. It is excited by an inverted 50 � SMA connector,
as shown in Fig. 1(b). The inverted-cone tube is composed
of a cylindrical tube and a feeding port with a gradually
changed radius. The radius of the circularly contoured feeding
port surface is denoted by R1, the height of the cutting-off
part is denoted by H1, and the height of the cylindrical tube
is H2.

The HP element is made of an interconnected cross bow-tie
dipole and optimized feeding striplines printed on the FR4 sub-
strates. The top and bottom striplines are set to be different to
allow for model optimization. A commercial RF balun is used
to connect each of the striplines. As shown in Fig. 1(a) and (c),
the sizes of the bow-tie arms are denoted by L1, L2, and W1.
The dimension of the substrates and feeding striplines are W2,
W3, W4, L3, L4, and L5, respectively. The thicknesses of the
substrates are denoted by D1, D2, and D3, respectively.

III. DESIGN CONSIDERATIONS

A. Antenna Operating Principle

The proposed design combines a VP element and an HP
element. The radius and height of the VP element determine its
lowest working frequency. The vertically polarized radiation
is produced by the outward traveling waves. To generate an
omnidirectional HP radiation, the HP element is designed and
fed by a broadband feeding network that produces two outputs
of the same amplitude with a 90° phase difference to rotate
the electric field [17].

To illustrate how to achieve an HP omnidirectional pattern
in the xy plane, let us consider a finite-length cross dipole
antenna, as shown in Fig. 2(a). Assume that the amplitudes of
the currents on the dipoles (I and II) are I1 and I2, respectively.
Accordingly, the electric fields of dipoles I and II [18] in the
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xy plane can be expressed as

−→
E I (r, φ, π/2) = φ̂ j I1η

cos(kl cos φ) − cos kl

sin φ

e− j kr

2πr
(1)

−→
E I I (r, φ, π/2) = −φ̂ j I2η

cos(kl sin φ) − cos kl

cos φ

e− j kr

2πr
(2)

where η, k, and l are the free-space intrinsic impedance,
the free-space wavenumber, and the length of the cross
dipole arm, respectively. Then, the total electric field of the
cross dipole under the excitations with the same amplitude
(I1 = I2 = I ) and a phase difference of 0° (

−→
E T 0) or 90°

(
−→
E T 90) can be obtained as
−→
E T 0(r, φ, π/2) = −→

E I (r, φ, π/2) + −→
E I I (r, φ, π/2)

= φ̂ j Iη

{
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sin φ

− cos(kl sin φ) − cos kl

cos φ

}
e− j kr

2πr
(3)−→

E T 90(r, φ, π/2) = −→
E I (r, φ, π/2) + j

−→
E I I (r, φ, π/2)

= φ̂ Iη

{
cos(kl sin φ) − cos kl

cos φ

+ j
cos(kl cos φ) − cos kl

sin φ

}
e− j kr

2πr
.

(4)

The normalized
−→
E T 0 and

−→
E T 90 patterns of the cross dipole

in the xy plane are plotted in Fig. 2(b), which shows that the
cross dipole can produce a good HP omnidirectional radiation
in the xy plane with the excitations of the same amplitude and
a 90° phase difference. Therefore, two orthogonal dipoles are a
suitable candidate to produce an omnidirectional HP radiation
pattern.

Now consider the functions of the small circular ground.
When the VP element is fed, an opposite directed current
appears on the HP element by electromagnetic coupling from
the small circular ground, which is similar to that on the
ground plane of a traditional monopole antenna. However,
the small ground has a negative effect on the HP element,
because if the distance between the bow-tie arms and the small
ground is too small, their coupling becomes too strong such
that the HP element will be shorted by the small ground. This
problem can be alleviated by selecting a proper distance such
that most currents would flow from one arm of the HP element
to another arm via the excitation port even though there are still
some coupling currents on the small ground. Consequently,
the HP element can be regarded as a cross dipole antenna.

The HP element uses four shorting pins to connect the four
bow-tie arms to each other. This modification is important
because the shorting pins have two functions: 1) to improve the
impedance matching and 2) to ameliorate the omnidirectional
radiation pattern. Since ports 2 and 3 are nearly symmetrical,
only the simulated input impedance of port 2 with and without
the shorting pins is shown. As can be observed in Fig. 3(a),
the inductive components of the shorting pins can compensate
the capacitive components caused by the cross bow-tie dipole
to improve the input impedance matching. Moreover, the

Fig. 3. Simulated input impedance of port 2 and radiation pattern of the
HP antenna in the xy plane with and without the shorting pins. (a) Input
impedance of port 2. (b) Radiation pattern of the HP antenna.

designed shorting pins make the impedance matching close
to 50 �, which is beneficial to the antenna design and
fabrication. Furthermore, Fig. 3(b) shows that the shorting pins
can ameliorate the omnidirectional radiation pattern in the xy
plane effectively. The gain variations are reduced from 4.6 to
2.3 dB at 2 GHz and from 7.5 to 4.6 dB at 2.45 GHz.

B. Antenna Performance

Following the geometrical description and operating
principle explained above, the antenna performance is now
investigated. It should be mentioned that since HFSS cannot
simulate the proposed antenna with commercial RF baluns,
the RF baluns need to be assumed as ideal devices and
50 � lumped ports with the same amplitude and a 90° phase
deviation are used for the HP element excitation.

When the VP element is excited, the simulated reflection
coefficient |S11| and gain values of the proposed VP element
are plotted in Fig. 4. It is obvious that the VP element can
maintain a good impedance matching within a wide frequency
range and the 10 dB return loss bandwidth is achieved from
1.6 to 2.6 GHz. Additionally, the simulated radiation patterns
of the inverted-cone monopole at 2 and 2.45 GHz are presented
in Fig. 5, showing that the gain variations of the inverted-
cone monopole in the horizontal plane are 0.7 and 2 dB
at 2 and 2.45 GHz, respectively.
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Fig. 4. Simulated |S11| and gain values of the proposed inverted-cone
monopole and the mutual coupling between the VP and HP elements.

Fig. 5. Simulated radiation patterns of the VP element at 2 and 2.45 GHz.

When the HP element is excited with the same amplitude
and a 90° phase deviation, the horizontally polarized omnidi-
rectional radiation can be obtained and the simulation results
are presented in Figs. 6 and 7, respectively. As shown in Fig. 6,
the operating frequency (|S22| and |S33| < −10 dB) of the
modified cross bow-tie dipole is from 1.64 to 2.5 GHz for
|S22| and 1.56 to 2.6 GHz for |S33|. The |S22| and |S33|
of the cross bow-tie dipole are a little different due to the
influence of the inverted-cone on the feeding structure of
port 2. The simulated gain value is 3.9 dB at 1.64 GHz, which
increases to 5.42 dB at 2.5 GHz. For the HP in the xy plane,
the bandwidth for gain variation less than 4.6 dB is from
1.64 to 2.45 GHz. The radiation patterns at 2 and 2.45 GHz are
displayed in Fig. 7, from which good omnidirectional radiation
patterns are observed in the xy plane.

IV. PARAMETRIC STUDY ON PHASE DIFFERENCE

The HP element is fed by a 90° feeding network to radiate a
horizontally polarized omnidirectional pattern by rotating the
electric field, which requires the feeding network to produce
two outputs of the same amplitude with a 90° phase difference.
Therefore, the phase information plays an important role on
the omnidirectional radiation pattern of the modified cross
bow-tie dipole. A parametric study is conducted here to
analyze the effects of the phase difference on the radiation
performance and help to guide the practical design of the
proposed modified cross bow-tie dipole.

Fig. 6. Simulated |S22|, |S33|, and gain values of the HP element.

Fig. 7. Simulated radiation patterns of the HP element at 2 and 2.45 GHz
with the excitations of the same amplitude and a 90° phase deviation.

Fig. 8. Simulated omnidirectional radiation patterns of the HP element under
different phase excitations at 2 and 2.45 GHz in the xy plane. (a) 2 GHz.
(b) 2.45 GHz.

Fig. 8 shows the simulated omnidirectional radiation pat-
terns of the modified cross bow-tie dipole under excitations
with different phase differences at 2 and 2.45 GHz in the
xy plane. The gain variations are 1.94, 2.3, and 3.1 dB at
2 GHz under the excitation of 80°, 90°, and 100° phase
differences, respectively. The gain variations are 5, 4.6, and
5.2 dB at 2.45 GHz under the excitation of 80°, 90°, and
100° phase differences, respectively. This parametric study
illustrates that the phase deviation within 10° is an acceptable
range, which helps to understand the measured omnidirectional
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Fig. 9. Photographs of the fabricated antenna. (a) 3-D view. (b) Top view.
(c) Bottom view.

Fig. 10. Simulation and measured results of the proposed antenna.
(a) VP element and its mutual coupling with the HP element and (b) HP
element.

radiation patterns of the fabricated modified cross bow-tie
antenna.

V. EXPERIMENTAL VERIFICATION

A prototype of the proposed wideband dual-polarized omni-
directional antenna is fabricated, as show in Fig. 9. The
feeding striplines of the HP element are printed on the
FR4 substrates (with εr = 4.4 and tan δ = 0.002). Two
NCS1-292 RF baluns are soldered on its top and bottom
striplines, respectively. Moreover, the outer conductor of a

Fig. 11. (a) Configuration and (b) measured S-parameters of the proposed
antenna combined with a feeding network.

50 � SMA connector is soldered onto the inverted-cone tube
and the inner conductor is connected to the small circular
ground.

Fig. 10(a) and (b) shows the measured and simulation
results of the VP and HP elements without a feeding network.
As shown in Fig. 10(a), the simulated 10 dB impedance
bandwidth of the VP element is from 1.6 to 2.6 GHz and
from 1.65 to 2.5 GHz for the measured one. The corre-
sponding fractional bandwidths are about 47.6% and 41%,
respectively. Fig. 10(b) presents the impedance bandwidth of
the HP element (|S22| and |S33| < −10 dB) which is from
1.64 to 2.5 GHz for |S22| and 1.56 to 2.6 GHz for |S33| from
the simulation, whereas the measured bandwidth (|S22| and
|S33| < −9.4 dB) is from 1.6 to 2.5 GHz for |S22| and 1.52 to
2.6 GHz for |S33|. The peak gain values of the antenna are
also presented in Fig. 10(a) and (b), where it is seen that the
proposed design has stable peak gain values over the frequency
band.

In order to combine ports 2 and 3 to achieve an HP
omnidirectional radiation pattern, the HP element is fed by a
broadband feeding network which consists of a power divider
and a 90° phase shifter [19], as shown in Fig. 11(a). The
return loss of the power divider and phase shifter is about
10 dB and the phase deviation of the phase shifter is within 6°.
The measured results agree well with the simulated ones
within the desired band. Fig. 11(b) demonstrates the measured
S-parameters of the proposed dual-polarized antenna with the
feeding network. It is clear that the proposed antenna achieves
a wide bandwidth, which is from 1.65 to 2.5 GHz for the
VP element and 1.5 to 2.47 GHz for the HP element. The
measured S-parameter of the HP element is a little higher than
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Fig. 12. (a) Measured environment of the proposed antenna and simulated
and measured radiation patterns of (b) VP element and (c) HP element.

−10 dB, which is caused by the SMA connector and the balun.
The isolation between the VP and HP ports is at least 25 dB.
In addition, the measurement environment of the proposed
antenna is presented in Fig. 12(a). The measured and simulated
radiation patterns of the dual-polarized antenna are shown
in Fig. 12(b) and (c), which exhibit good omnidirectional
radiation patterns for both VP and HP.

It should be noted that the peak gain and radiation pattern
of the HP element were not measured directly as the standard
circularly polarized horn antenna was not available for the
measurement system used. Instead, two linear polarization
components of the modified cross bow-tie dipole were mea-
sured to synthesize the radiation pattern with the assumption
of a 90° phase difference for the two ports. As such, the effects
of the shorting pins could not be considered in the synthesized
radiation pattern.

VI. CONCLUSION

A wideband omnidirectional antenna was presented to
achieve dual polarizations. The proposed antenna integrates
the VP and HP elements by adding a small circular ground
for antenna miniaturization. The radiating mechanism of the
proposed wideband dual-polarized omnidirectional antenna
was analyzed and a parametric study was conducted to exam-
ine the influences of the phase difference on the antenna’s
radiation performance. In addition, the measured results are
in good agreement with the simulated ones, which illustrates
that the proposed design has achieved a high isolation, a wide
bandwidth, and dual polarizations.
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